Severo Ochoa Programme

Research News

  • Proposed model to explain the color diversity observed on the surface of Bennu.

    The main objective of the NASA OSIRIS-REx mission is the collection of material from the surface of primitive asteroid (101955) Bennu, and to bring it back to the Earth. To provide general context to the results obtained from the analysis of this sample it is fundamental to carry out an extensive study of the surface of the asteroid. To do that, the spacecraft is provided, among other instruments, with an optical camera (MapCam) equipped with 4 color filters b’, v, w, and x, centered at 473, 550, 698, and 847 nm, respectively. This set-up allowed to do color studies, i.e., to analyze how the

    Advertised on
  • AU mic b light curves from TESS and Spitzer IRAC at 4.5 μm  (purple filled circles). The transit model (orange curve) includes a photometric model that accounts for the stellar activity modelled with a Gaussian Process (GP), which is subtracted from the data before plotting. The frequent flares from the stellar surface are removed with an iterative sigma-clipping.

    AU Microscopii (AU Mic) is the second closest pre-main-sequence star, at a distance of 9.79 parsecs and with an age of 22 million years . AU Mic possesses a relatively rare and spatially resolved edge-on debris disk extending from about 35 to 210 astronomical units from the star , and with clumps exhibiting non-Keplerian motion . Detection of newly formed planets around such a star is challenged by the presence of spots, plage, flares and other manifestations of magnetic ‘activity’ on the star . Here we report observations of a planet transiting AU Mic. The transiting planet, AU Mic b, has

    Advertised on
  • Simulation of the OSIRIS-REx "touch-and-go" mission in Nightingale crater.

    This Tuesday October 20th at around 23.12 hr (Canary time) the NASA space probe OSIRIS-REx will make its first attempt to collect samples from the asteroid (101955) Bennu. The Instituto de Astrofísica de Canarias (IAC) has played an active role in the mission since 2011. Researchers Julia de León, Javier Licandro, Eri Tatsumi and Juan Luis Rizos, who are members of the science team of OSIRIS-REx will be present telematically at the meeting organized by this NASA mission so that the science team can follow in real time this dangerous maneuvre¸ using the SamCam camera on board the probe. This

    Advertised on
  • Left: Artistic representation of the current interaction between the Sagittarius dwarf galaxy and the Milky Way. Credit: Gabriel Pérez Díaz, SMM (IAC). Right: Detailed evolutionary history of the Milky Way unveiled using Gaia data. Three clear star formation enhancements can be spoted.

    The European Space Agency's Gaia mission is revolutionising our understanding on how the Milky Way, the spiral galaxy we inhabit, has formed and evolved. Gaia is measuring the apparent luminosities, colours, positions, motions, and the chemical composition of an unprecedentedly large number of individual stars in our Galaxy. In particular, combining apparent luminosities with distances to these stars, here we have computed the intrinsic luminosity of 24 million stars within a sphere of 6500 light years around our Sun. Comparing such luminosities and colours with accurate models of stars we

    Advertised on
  • Optical image of the Perseus molecular cloud, a widely-known region of intense stellar formation. The interstellar dust, which generates the AME, is clearly visible, as it reflects light from nearby stars. Image credit: APOD 2017 January 14, Lóránd Fényes.

    The main emission mechanisms of the interstellar medium (ISM) in the spectral range between the radio and the far infrared are very well characterised and understood, both observationally and theoretically, for decades. However, in the late 90s a new mechanism was discovered in the microwaves, that has been coined “anomalous microwave emission” (AME). A basic feature of this emission is its tight spatial correlation with the thermal emission from ISM dust grains. This means that the AME observed intensity is stronger in regions with a higher abundance of ISM grains. This led to the proposal

    Advertised on
  • false-color Red-Green-Blue (RGB) image of Bennu

    Science magazine, in a special collection on asteroid Bennu, has published the results of the analysis of photometric-spectrum color variations on the surface of this extremely interesting asteroid, captured by the NASA OSIRIS-REx spacecraft. Thanks to these results, researchers proposed a model to explain the effects of “space weather” on materials similar to carbonaceous chondrite meteorites. They concluded that some of the heterogeneity observed on the surface of Bennu is due to space weathering and some is inherited from Bennu’s parent asteroid. Juan Luis Rizos, Eri Tatsumi, Javier

    Advertised on