Probing the Dark Flow signal in WMAP 9 yr and PLANCK cosmic microwave background maps.

Fernando Atrio Barandela
Fecha y hora
19 Mar 2015 - 09:30 Europe/London


Idioma de la charla
Idioma de la presentación
Número en la serie

The ``dark flow'' dipole is a statistically significant dipole found at the position of galaxy clusters in filtered maps of Cosmic Microwave Background (CMB) temperature anisotropies. The dipole measured in WMAP 3, 5 and 7 yr data releases was roughly aligned with the all-sky CMB dipole and correlated with cluster X-ray luminosity. We analyzed the final WMAP 9 yr and the first Planck data releases using a catalog of 980 clusters outside the Kp0 mask to test our earlier findings. The dipoles measured on these new data sets are fully compatible with our earlier estimates, being similar in amplitude and direction to our previous results and in disagreement with the results of an earlier study by the Planck Collaboration. Further, in Planck data dipoles are independent of frequency, ruling out the Thermal Sunyaev-Zeldovich as the source of the effect. The signal is dominated by the most massive clusters, with a statistical significance better than 99%, slightly larger than in WMAP. Since both data sets differ in foreground contributions, instrumental noise and other systematics, the agreement between WMAP and Planck dipoles argues against them being due to systematic effects in either of the experiments.