The Donor of the Black Hole X-Ray Binary MAXI J1820+070

Mikołajewska, Joanna; Zdziarski, Andrzej A.; Ziółkowski, Janusz; Torres, Manuel A. P.; Casares, Jorge
Referencia bibliográfica

The Astrophysical Journal

Fecha de publicación:
5
2022
Número de autores
5
Número de autores del IAC
2
Número de citas
11
Número de citas referidas
8
Descripción
We estimate the parameters of the donor of the accreting black hole binary MAXI J1820+070. The measured values of the binary period, rotational and radial velocities, and constraints on the orbital inclination imply the donor is a subgiant with the mass of ${M}_{2}\approx {0.49}_{-0.10}^{+0.10}{M}_{\odot }$ and the radius of ${R}_{2}\approx {1.19}_{-0.08}^{+0.08}{R}_{\odot }$ . We reanalyze the previously obtained optical spectrum from the Gran Telescopio Canarias and found it yields a strict lower limit on the effective temperature of T > 4200 K. We compile optical and infrared fluxes observed during the quiescence of this system. From the minima r- and i-band fluxes found in Pan-STARSS1 Data Release 2 prediscovery imaging and for a distance of D ≍ 3 kpc, reddening of E(B - V) = 0.23, and R 2 ≍ 1.11R ⊙, we find T ≲ 4230 K, very close to the above lower limit. For a larger distance, the temperature can be higher, up to about 4500 K (corresponding to a K5 spectral type, preferred by previous studies) at D = 3.5 kpc, allowed by the Gaia parallax. We perform evolutionary calculations for the binary system and compare them to the observational constraints. Our model fitting the above temperature and radius constraints at D ≍ 3 kpc has a mass of 0.4M ⊙, T ≍ 4200 K, and solar metallicity. Two alternative models require D ≳ 3.3-3.4 kpc at 0.4M ⊙, T ≍ 4500 K and half-solar metallicity, and 0.5M ⊙, T ≍ 4300 K, and solar metallicity. These models yield mass-transfer rates of ~10-10 M ⊙ yr-1, compatible with those based on the estimated accreted mass of ≍2 × 1025 g and the time between the 2018 discovery and the 1934 historical outburst.
Proyectos relacionados
Agujero negro en erupción
Agujeros negros, estrellas de neutrones, enanas blancas y su entorno local

Los agujeros negros y estrellas de neutrones en binarias de rayos-X son laboratorios únicos para explorar la física de estos objetos compactos. No solo permiten confirmar la existencia de agujeros negros de origen estelar a través de mediciones dinámicas de sus masas, sino que también permiten investigar el comportamiento de la materia y la

Montserrat
Armas Padilla