Episodic dust formation by HD 192641 (WR 137) - II

Williams, P. M.; Kidger, M. R.; van der Hucht, K. A.; Morris, P. W.; Tapia, M.; Perinotto, M.; Morbidelli, L.; Fitzsimmons, A.; Anthony, D. M.; Caldwell, J. J.; Alonso, A.; Wild, V.
Referencia bibliográfica

Monthly Notices of the Royal Astronomical Society, Volume 324, Issue 1, pp. 156-166.

Fecha de publicación:
6
2001
Número de autores
12
Número de autores del IAC
2
Número de citas
46
Número de citas referidas
40
Descripción
We present new infrared photometry of the WC7-type Wolf-Rayet star HD 192641 (WR137) from 1985 to 1999. These data track the cooling of the dust cloud formed in the 1982-84 dust-formation episode from 1985 to 1991, the increase of the infrared flux from 1994.5 to a new dust-formation maximum in 1997 and its subsequent fading. From these and earlier data we derive a period of 4765+/-50d (13.05+/-0.15yr) for the dust-formation episodes. Between dust-emission episodes, the infrared spectral energy distribution has the form of a power law, λFλ~λ-1.86. The rising branch of the infrared light curve (1994-97) differs in form from that of the episodic dust-maker WR125. Time-dependent modelling shows that this difference can be attributed to a different time dependence of dust formation in WR137, which occurred approximately ~t2 until maximum, whereas that of WR125 could be described by a step function, akin to a threshold effect. For an adopted distance of 1.6kpc, the rate of dust formation was found to be 5.0×10-8Msolaryr-1 at maximum, accounting for a fraction fC~1.5×10-3 of the carbon flowing in the stellar wind. The fading branches of the light curves show evidence for secondary `mini-eruptions' in 1987, 1988 and 1990, behaviour very different from that of the prototypical episodic dust-maker HD 193793 (WR140), and suggesting the presence in the WR137 stellar wind of large-scale structures that are crossed by the wind-wind collision region.