Bibcode
Burger, P. A.; Aricò, G.; Linke, L.; Angulo, R. E.; Broxterman, J. C.; Schaye, J.; Schaller, M.; Zennaro, M.; Halder, A.; Porth, L.; Heydenreich, S.; Hudson, M. J.; Amara, A.; Andreon, S.; Baccigalupi, C.; Baldi, M.; Balestra, A.; Bardelli, S.; Biviano, A.; Branchini, E.; Brescia, M.; Camera, S.; Capobianco, V.; Carbone, C.; Cardone, V. F.; Carretero, J.; Casas, S.; Castellano, M.; Castignani, G.; Cavuoti, S.; Chambers, K. C.; Cimatti, A.; Colodro-Conde, C.; Congedo, G.; Conversi, L.; Copin, Y.; Courbin, F.; Courtois, H. M.; Da Silva, A.; Degaudenzi, H.; de la Torre, S.; De Lucia, G.; Dubath, F.; Duncan, C. A. J.; Dupac, X.; Dusini, S.; Escoffier, S.; Farina, M.; Farinelli, R.; Ferriol, S.; Finelli, F.; Fosalba, P.; Fourmanoit, N.; Frailis, M.; Franceschi, E.; Fumana, M.; Galeotta, S.; Gillis, B.; Giocoli, C.; Gracia-Carpio, J.; Grazian, A.; Grupp, F.; Haugan, S. V. H.; Hoekstra, H.; Holmes, W.; Hook, I. M.; Hormuth, F.; Hornstrup, A.; Jahnke, K.; Jhabvala, M.; Joachimi, B.; Keihänen, E.; Kermiche, S.; Kilbinger, M.; Kubik, B.; Kunz, M.; Kurki-Suonio, H.; Le Brun, A. M. C.; Ligori, S.; Lilje, P. B.; Lindholm, V.; Lloro, I.; Mainetti, G.; Maino, D.; Maiorano, E.; Mansutti, O.; Marggraf, O.; Martinelli, M.; Martinet, N.; Marulli, F.; Massey, R.; Medinaceli, E.; Mei, S.; Melchior, M.; Meneghetti, M.; Merlin, E.; Meylan, G.; Mora, A.; Moresco, M.; Moscardini, L. et al.
Referencia bibliográfica
Astronomy and Astrophysics
Fecha de publicación:
1
2026
Revista
Número de citas
4
Número de citas referidas
0
Descripción
The Euclid mission and other next-generation large-scale structure surveys will enable high-precision measurements of the cosmic matter distribution. Understanding the impact of baryonic processes such as star formation and active galactic nuclei (AGN) feedback on matter clustering is crucial to ensure precise and unbiased cosmological inference. Most theoretical models of baryonic effects to date focus on two-point statistics, neglecting higher-order contributions. This work develops a fast and accurate emulator for baryonic effects on the matter bispectrum, a key non-Gaussian statistic in the nonlinear regime. We employ high-resolution N-body simulations from the BACCO suite and apply a combination of cutting-edge techniques such as cosmology scaling and baryonification to efficiently span a large cosmological and astrophysical parameter space. A deep neural network is trained to emulate baryonic effects on the matter bispectrum measured in simulations, capturing modifications across various scales and redshifts relevant to Euclid. We validate the emulator accuracy and robustness using an analysis of Euclid mock data, employing predictions from the state-of-the-art FLAMINGO hydrodynamical simulations. The emulator reproduces baryonic suppression in the bispectrum to better than 2% for the 68% percentile across most triangle configurations for k ∈ [0.01, 20] h Mpc−1 and ensures consistency between cosmological posteriors inferred from second- and third-order weak lensing statistics. These results demonstrate that our emulator meets the high-precision requirements of the Euclid mission for at least the first data release and provides reliable forecasts of the cosmological information contained in the small-scale matter bispectrum. This underscores the potential of emulation techniques to bridge the gap between complex baryonic physics and observational data, maximising the scientific output of Euclid. ★ This paper is published on behalf of the Euclid Consortium.