Hubble spectroscopy of LB-1: Comparison with B+black-hole and Be+stripped-star models

Lennon, D. J.; Maíz Apellániz, J.; Irrgang, A.; Bohlin, R.; Deustua, S.; Dufton, P. L.; Simón-Díaz, S.; Herrero, A.; Casares, J.; Muñoz-Darias, T.; Smartt, S. J.; González Hernández, J. I.; de Burgos, A.
Referencia bibliográfica

Astronomy and Astrophysics

Fecha de publicación:
5
2021
Número de autores
13
Número de autores del IAC
7
Número de citas
13
Número de citas referidas
11
Descripción
Context. LB-1 (alias ALS 8775) has been proposed as either an X-ray dim B-type star plus black hole (B+BH) binary or a Be star plus an inflated stripped star (Be+Bstr) binary. The latter hypothesis contingent upon the detection and characterization of the hidden broad-lined star in a composite optical spectrum.
Aims: Our study is aimed at testing the published B+BH (single star) and Be+Bstr (binary star) models using a flux-calibrated UV-optical-IR spectrum.
Methods: The Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope (HST) was used to obtain a flux-calibrated spectrum with an accuracy of ∼1%. We compared these data with non-local thermal equilibrium (non-LTE) spectral energy distributions (SED) and line profiles for the proposed models. The Hubble data, together with the Gaia EDR3 parallax and a well-determined extinction, were used to provide tight constraints on the properties and stellar luminosities of the LB-1 system. In the case of the Be+Bstr model we adopted the published flux ratio for the Be and Bstr stars, re-determined the Teff of the Bstr using the silicon ionization balance, and inferred Teff for the Be star from the fit to the SED.
Results: The UV data strongly constrain the microturbulence velocity to ≲2 km s‒1 for the stellar components of both models. We also find stellar parameters consistent with previous results, but with greater precision enabled by the Hubble SED. For the B+BH single-star model, we find the parameters (Teff, log(L/L⊙), Mspec/M⊙) of the B-type star to be (15 300 ± 300 K, 3.23‒0.10+0.09, 5.2‒1.4+1.8). For the Bstr star we obtain (12 500 ± 100 K, 2.70‒0.09+0.09, 0.8‒0.3+0.5), and for the Be star (18 900 ± 200 K, 3.04‒0.09+0.09, 3.4‒1.8+3.5). While the Be+Bstr model is a better fit to the He I lines and cores of the Balmer lines in the optical, the B+BH model provides a better fit to the Si IV resonance lines in the UV. The analysis also implies that the Bstr star has roughly twice the solar silicon abundance, which is difficult to reconcile with a stripped star origin. The Be star, on the other hand, has a rather low luminosity and a spectroscopic mass that is inconsistent with its possible dynamical mass.
Conclusions: We provide tight constraints on the stellar luminosities of the Be+Bstr and B+BH models. For the former, the Bstr star appears to be silicon-rich, while the notional Be star appears to be sub-luminous for a classical Be star of its temperature and the predicted UV spectrum is inconsistent with the data. This latter issue can be significantly improved by reducing the Teff and radius of the Be star, at the cost, however, of a different mass ratio as a result. In the B+BH model, the single B-type spectrum is a good match to the UV spectrum. Adopting a mass ratio of 5.1 ± 0.1, from the literature, implies a BH mass of ∼21‒8+9 M⊙.

Full Table 2 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/649/A167
Proyectos relacionados
Physical properties and evolution of massive stars
Propiedades Físicas y Evolución de Estrellas Masivas

Las estrellas masivas son objetos claves para la Astrofísica. Estas estrellas nacen con más de 8 masas solares, lo que las condena a morir como Supernovas. Durante su rápida evolución liberan, a través de fuertes vientos estelares, gran cantidad de material procesado en su núcleo y, en determinadas fases evolutivas, emiten gran cantidad de

Sergio
Simón Díaz
Imagen del Proyecto
Pruebas Observacionales de los Procesos de Nucleosíntesis en el Universo

Recientemente se han llevado a cabo varios análisis espectroscópicos de estrellas con planetas. Uno de los resultados más relevantes ha sido descubrir que las estrellas con planetas son en promedio más metálicas que las estrellas del mismo tipo espectral sin planetas conocidos (Santos, Israelian & Mayor 2001, A&A, 373, 1019; 2004, A&A, 415, 1153)

Garik
Israelian