Tracing the stellar component of low surface brightness Milky Way dwarf galaxies to their outskirts. I. Sextans

Cicuéndez, L.; Battaglia, G.; Irwin, M.; Bermejo-Climent, J. R.; McMonigal, B.; Bate, N. F.; Lewis, G. F.; Conn, A. R.; de Boer, T. J. L.; Gallart, C.; Guglielmo, M.; Ibata, R.; McConnachie, A.; Tolstoy, E.; Fernando, N.
Referencia bibliográfica

Astronomy and Astrophysics, Volume 609, id.A53, 22 pp.

Fecha de publicación:
1
2018
Número de autores
15
Número de autores del IAC
4
Número de citas
26
Número de citas referidas
26
Descripción
Aims: We present results from deep and very spatially extended CTIO/DECam g and r photometry (reaching out to 2 mag below the oldest main-sequence turn-off and covering 20 deg2) around the Sextans dwarf spheroidal galaxy. We aim to use this dataset to study the structural properties of Sextans overall stellar population and its member stars in different evolutionary phases, as well as to search for possible signs of tidal disturbance from the Milky Way, which would indicate departure from dynamical equilibrium. Methods: We performed the most accurate and quantitative structural analysis to-date of Sextans' stellar components by applying Bayesian Monte Carlo Markov chain methods to the individual stars' positions. Surface density maps are built by statistically decontaminating the sample through a matched filter analysis of the colour-magnitude diagram, and then analysed for departures from axisymmetry. Results: Sextans is found to be significantly less spatially extended and more centrally concentrated than early studies suggested. No statistically significant distortions or signs of tidal disturbances were found down to a surface brightness limit of 31.8 mag/arcsec2 in V-band. We identify an overdensity in the central regions that may correspond to previously reported kinematic substructure(s). In agreement with previous findings, old and metal-poor stars such as Blue Horizontal Branch stars cover a much larger area than stars in other evolutionary phases, and bright Blue Stragglers (BSs) are less spatially extended than faint ones. However, the different spatial distribution of bright and faint BSs appears consistent with the general age and metallicity gradients found in Sextans' stellar component. This is compatible with Sextans BSs having formed by evolution of binaries and not necessarily due to the presence of a central disrupted globular cluster, as suggested in the literature. We provide structural parameters for the various populations analysed and make publicly available the photometric catalogue of point-sources as well as a catalogue of literature spectroscopic measurements with updated membership probabilities. Full Tables 2 and 6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A53
Proyectos relacionados
Una vista de nuestra galaxia, la Vía Láctea, con sus vecinos cercanos,  las Nubes de Magallanes
Evolución Galáctica en el Grupo Local

La formación y evolución de galaxias es un problema fundamental en Astrofísica. Su estudio requiere “viajar atrás en el tiempo”, para lo cual hay dos enfoques complementarios. El mas extendido consiste en analizar las propiedades de las galaxias a diferentes distancias cosmológicas. Nuestro equipo se concentra en el otro enfoque, denominado

Matteo
Monelli