Study reveals that giant planets could reach "maturity" much earlier than previously thought

Artist's impression of the planetary system V1298 Tau. Crédito: Gabriel Pérez Díaz, SMM (IAC)
Related projects
Helio and Asteroseismology
Helio and Astero-Seismology and Exoplanets Search

The principal objectives of this project are: 1) to study the structure and dynamics of the solar interior, 2) to extend this study to other stars, 3) to search for extrasolar planets using photometric methods (primarily by transits of their host stars) and their characterization (using radial velocity information) and 4) the study of the planetary

Savita
Mathur
Projects' name image
Exoplanets and Astrobiology

The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable

Enric
Pallé Bago
Diseño 3D del instrumento en su ubicación
HARPS3 (High Accuracy Radial velocity Planet Searcher)

HARPS3 (High Accuracy Radial velocity Planet Searcher) is a new version of the succesful HARPS instrument. HARPS3 is an Echelle spectrograph with high resolution (R ~ 115000) and a wavelength range of 380-690 nm. It will be installed in the Isaac Newton Telescope (upgraded and robotized) at the ORM.

Jonay Isai
González Hernández
Related news
Artist’s impression of the star GJ 3512, a red dwarf of approximately one tenth of the mass of the Sun, on which the newly discovered exoplanet GJ 3512b, a gas giant of high mass, orbits an unusual planet in this type of planetary systems.

Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate

Advertised on
GTC (panel a) and Spitzer (panel b) transit observation of the planet candidate WD 1856b.  The lack of difference in the transit depth in the optical and infrared helps to put constraints in the mass of the transiting object.

Astronomers have discovered thousands of planets outside the Solar System, most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by the star, but more distant planets can survive this phase and remain in orbit around the white dwarf. Some white dwarfs show evidence for rocky material floating in their atmospheres, in warm debris disks or orbiting very closely, which has been interpreted as the debris of rocky planets that were scattered inwards and tidally disrupted. Recently

Advertised on