HD 22496 b: The first ESPRESSO stand-alone planet discovery

Lillo-Box, J.; Faria, J. P.; Suárez Mascareño, A.; Figueira, P.; Sousa, S. G.; Tabernero, H.; Lovis, C.; Silva, A. M.; Demangeon, O. D. S.; Benatti, S.; Santos, N. C.; Mehner, A.; Pepe, F. A.; Sozzetti, A.; Zapatero Osorio, M. R.; González Hernández, J. I.; Micela, G.; Hojjatpanah, S.; Rebolo, R.; Cristiani, S.; Adibekyan, V.; Allart, R.; Allende Prieto, C.; Cabral, A.; Damasso, M.; Di Marcantonio, P.; Lo Curto, G.; Martins, C. J. A. P.; Megevand, D.; Molaro, P.; Nunes, N. J.; Pallé, E.; Pasquini, L.; Poretti, E.; Udry, S.
Referencia bibliográfica

Astronomy and Astrophysics

Fecha de publicación:
10
2021
Número de autores
35
Número de autores del IAC
5
Número de citas
7
Número de citas referidas
6
Descripción
Context. The ESPRESSO spectrograph is a new powerful tool developed to detect and characterize extrasolar planets. Its design allows an unprecedented radial velocity precision (down to a few tens of cm s−1) and long-term thermomechanical stability.
Aims: We present the first stand-alone detection of an extrasolar planet by blind radial velocity search using ESPRESSO; our aim is to show the power of the instrument in characterizing planetary signals at different periodicities in long observing time spans.
Methods: We used 41 ESPRESSO measurements of HD 22496 obtained within a time span of 895 days with a median photon noise of 18 cm s−1. A radial velocity analysis was performed to test the presence of planets in the system and to account for the stellar activity of this K5-K7 main-sequence star. For benchmarking and comparison, we attempted the detection with 43 archive HARPS measurements and in this work we compare the results yielded by the two datasets. We also used four TESS sectors to search for transits.
Results: We find radial velocity variations compatible with a close-in planet with an orbital period of P = 5.09071 ± 0.00026 days when simultaneously accounting for the effects of stellar activity on longer timescales (Prot = 34.99−0.53+0.58 days). We characterize the physical and orbital properties of the planet and find a minimum mass of 5.57−0.68+0.73 M⊕, right in the dichotomic regime between rocky and gaseous planets. Although not transiting according to TESS data, if aligned with the stellar spin axis, the absolute mass of the planet must be below 16 M⊕. We find no significant evidence for additional signals in the data with semi-amplitudes above 56 cm s−1 at 95% confidence.
Conclusions: With a modest set of radial velocity measurements, ESPRESSO is capable of detecting and characterizing low-mass planets and constraining the presence of planets in the habitable zone of K dwarfs down to the rocky-mass regime.

Full Table B.2 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/654/A60

Based on Guaranteed Time Observations collected at the European Southern Observatory (ESO) under ESO programs 1102.C-074, 1104.C-0350, and 106.21M2 by the ESPRESSO Consortium.
Proyectos relacionados
Descubrimiento de un sistema de supertierras orbitando la estrella HD 176986 con aproximadamente 5.7 and 9.2 masas de la Tierra
Estrellas de Baja Masa, Enanas Marrones y Planetas

Se investigan los procesos que conducen a la formación de estrellas de baja masa, enanas marrones y exoplanetas y caracterizar las propiedades físicas de estos astros en varias etapas evolutivas. Las estrellas de muy baja masa y las enanas marrones son probablemente los objetos más numerosos de nuestra Galaxia, pero no por ello están

Rafael
Rebolo López
Image withthe projects' name
Exoplanetas y Astrobiología

La búsqueda de vida en el Universo se ha visto impulsada por los recientes descubrimientos de planetas alrededor de otras estrellas (los llamados exoplanetas), convirtiéndose en uno de los campos más activos dentro de la Astrofísica moderna. En los últimos años los descubrimientos cada vez más numerosos de nuevos exoplanetas y los últimos avances

Enric
Pallé Bago
spectrum of mercury lamp
Abundancias Químicas en Estrellas

La espectroscopía de estrellas nos permite determinar las propiedades y composiciones químicas de las mismas. A partir de esta información para estrellas de diferente edad en la Vía Láctea es posible reconstruir la evolución química de la Galaxia, así como el origen de los elementos más pesados que el boro, forjados principalmente en los interiores

Carlos
Allende Prieto