Improved detection of far-side solar active regions using deep learning

Felipe, T.; Asensio Ramos, A.
Referencia bibliográfica

Astronomy and Astrophysics

Fecha de publicación:
12
2019
Número de autores
2
Número de autores del IAC
2
Número de citas
11
Número de citas referidas
9
Descripción
Context. The analysis of waves on the visible side of the Sun allows the detection of active regions on the far side through local helioseismology techniques. Knowing the magnetism in the whole Sun, including the non-visible hemisphere, is fundamental for several space weather forecasting applications.
Aims: Seismic identification of far-side active regions is challenged by the reduced signal-to-noise ratio, and only large and strong active regions can be reliable detected. Here we develop a new method to improve the identification of active region signatures in far-side seismic maps.
Methods: We constructed a deep neural network that associates the far-side seismic maps obtained from helioseismic holography with the probability that active regions lie on the far side. The network was trained with pairs of helioseismic phase-shift maps and Helioseismic and Magnetic Imager (HMI) magnetograms acquired half a solar rotation later, which were used as a proxy for the presence of active regions on the far side. The method was validated using a set of artificial data, and it was also applied to actual solar observations during the period of minimum activity of solar cycle 24.
Results: Our approach shows a higher sensitivity to the presence of far-side active regions than standard methods that have been applied up to date. The neural network can significantly increase the number of detected far-side active regions, and will potentially improve the application of far-side seismology to space weather forecasting.
Proyectos relacionados
Imagen del Proyecto
Magnestismo Solar y Estelar

Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas

Tobías
Felipe García
Project Image
Magnetismo, Polarización y Transferencia Radiativa en Astrofísica

Los campos magnéticos están presentes en todos los plasmas astrofísicos y controlan la mayor parte de la variabilidad que se observa en el Universo a escalas temporales intermedias. Se encuentran en estrellas, a lo largo de todo el diagrama de Hertzsprung-Russell, en galaxias, e incluso quizás en el medio intergaláctico. La polarización de la luz

Tanausú del
Pino Alemán