Medir el tamaño de las galaxias es esencial para comprender cómo se formaron y evolucionaron a lo largo del tiempo. Sin embargo, métodos tradicionales basados en la distribución de la luz o isodensidades carecen de un significado físico claro. Un estudio reciente de Trujillo+20, explora una definición fundamentada físicamente: el radio R 1 , donde la densidad superficial estelar desciende a 1 masa solar por parsec cuadrado, aproximadamente el umbral necesario a partir del cual el gas deja de formar estrellas en galaxias como la Vía Láctea. En este trabajo, Arjona-Gálvez+25 emplean más de 1
La corona solar –la capa más externa de la atmósfera del Sol– es extremadamente caliente y de muy baja densidad. Uno de los principales retos en física solar es comprender por qué la corona alcanza temperaturas de millones de grados. Se cree que este calentamiento está estrechamente relacionado con el campo magnético del Sol. Sin embargo, cuantificar el campo magnético coronal es complicado porque la luz que emite la corona es extremadamente tenue y las señales de polarización, que codifican la información sobre el campo magnético, son sutiles. Gracias a los avances tecnológicos más
Cada vez son más las observaciones que muestran que los modelos evolutivos de estrellas aisladas no son capaces de reproducir todas las propiedades de las estrellas masivas. La interacción binaria aparece como un proceso clave en la evolución de una fracción significativa de las estrellas masivas. En este estudio, investigamos las abundancias superficiales de helio (Y(He)) y nitrógeno en una muestra de 180 estrellas de tipo O de la Vía Láctea con velocidades de rotación proyectadas ≤150 km/s. Entre ellas, encontramos una submuestra (aproximadamente el 20% del total y el 80% de las estrellas