Minor Bodies of the Solar System

    Description

    This project studies the physical and compositional properties of the so-called minor bodies of the Solar System, that includes asteroids, icy objects, and comets. Of special interest are the trans-neptunian objects (TNOs), including those considered the most distant objects detected so far (Extreme-TNOs or ETNOs); the comets and the comet-asteroid transitional objects (Centaurs and main belt comets or MBCs); the primitive asteroids. The last two groups contain the most primordial and pristine material of the Solar System and so they provide the clues to understand the origin and the subsequent evolution of our system. Among asteroid population, the near-Earth asteroids or NEAs, as well as the potentially hazardous asteroids (PHAs) are of particular interest: due to their proximity to the Earth, they are the most accesible to spacecraft and so are ideal for in-situ or even sample-return space missions. In addition they are considered as future potential resources of materials (asteroid mining), and they are also impact hazards for the Earth. Regarding primitive asteroids, it is remarkable the spectroscopic survey (visible and near-infrared) led by the PI of this project (PRIMitive Asteroids Spectroscopic Survey - PRIMASS). This survey received financial support from NASA (17-PDART17_2-0097, PI: N. Pinilla-Alonso, 137.000€ - 2 years) in order to upload and archive at the Small Bodies Node of the NASA Planetary Data System the more than 800 spectra obtained.

    The compositional surface properties, as well as the physical and thermal properties of these objects are inferred through imaging, photometry, and spectroscopy in a wide range of wavelengths (from 0.35 up to 24 microns). Data are interpreted using scattering and thermo-physical models. This project works also in the study of the physical properties of the cometary nuclei, as well as properties of dust and coma in the tails of the MBCs and the mechanisms that generate them.

    This group maintains several international collaborations with other groups, and some of their members are also members of (1) the Science Team of the NASA OSIRIS-REx mission, in particular the Image Processing Working Group, were they work with the images obtained with the OCAMS suite of cameras; (2) the coordination of an international group to study NEAs (EURONEAR); (3) the central core of the proponents of ESA M5 missions CASTALIA, CASTAway, and Hera; (4) the Center for Lunar and Asteroid Surface Science - CLASS (NASA); (5) the Solar System group of the Euclid consortium; (6) the surveys J-PLUS and J-PASS for the exploitation of observations of Solar System objects; (7) the Solar System working group of Gaia and JWST.

    Principal investigator
    Project manager
    Collaborators
    Dr.
    Noemí Pinilla-Alonso
    Dr.
    Humberto Campins
    Dr.
    Fernando Moreno Danvila
    Dr.
    Y. Fernández
    Dr.
    José Luis Ortiz
    Dr.
    R. Duffard
    Prof.
    R. Hil-Hutton

    Publications related

    Talks related

    No related talks were found.

    Conferences related

    No related conferences were found.

    Related news

    • false-color Red-Green-Blue (RGB) image of Bennu

      Science magazine, in a special collection on asteroid Bennu, has published the results of the analysis of photometric-spectrum color variations on the surface of this extremely interesting asteroid, captured by the NASA OSIRIS-REx spacecraft. Thanks to these results, researchers proposed a model to explain the effects of “space weather” on materials similar to carbonaceous chondrite meteorites. They concluded that some of the heterogeneity observed on the surface of Bennu is due to space weathering and some is inherited from Bennu’s parent asteroid. Juan Luis Rizos, Eri Tatsumi, Javier

      Advertised on
    • Material exógeno Ryugu y Bennu

      The two near-Earth asteroids Ryugu and Bennu, primary targets of the Hayabusa2 (JAXA) and OSIRIS-REx (NASA) space missions, keep surprising us. In two companion papers presented in Nature Astronomy, researchers have found exogenous bright material scattered across the asteroids’ surfaces. Members of the Solar System Group of the Instituto de Astrofísica de Canarias (IAC) have contributed to this discovery, in particular Dr. Eri Tatsumi, who is the first author of the paper presenting findings on Ryugu (Hayabusa2).

      Advertised on
    • Image, left-hand panel, and reflectance spectrum, right-hand panel, of interstellar comet C/2019 Q4 (Borisov) obtained by the 10.4~m Gran Telescopio Canarias (GTC), located at the El Roque de Los Muchachos Observatory (La Palma, Canary Islands, Spain), which is managed by the Instituto de Astrofísica de Canarias (IAC) together with the Teide Observatory in the island of Tenerife.

      The spectrum acquired by GTC of interstellar comet C/2019 Q4 (Borisov) reveals that this object has a surface composition not unlike that found in Solar System comets. Shortly before dawn on September 13th, Julia de León, Miquel Serra-Ricart, Javier Licandro, all members of IAC's Solar System Group, and Carlos Raúl de la Fuente Marcos, from the Complutense University of Madrid, obtained high resolution images and visible spectra of comet C/2019 Q4 (Borisov) using the OSIRIS instrument at the 10.4m GTC, installed in the Roque de los Muchachos Observatory (Garafía, La Palma). Observations were

      Advertised on