Multifrequency studies of galaxies and groups. I. Environmental effect on galaxy stellar mass and morphology

Poudel, A.; Heinämäki, P.; Nurmi, P.; Teerikorpi, P.; Tempel, E.; Lietzen, H.; Einasto, M.
Referencia bibliográfica

Astronomy and Astrophysics, Volume 590, id.A29, 14 pp.

Fecha de publicación:
5
2016
Número de autores
7
Número de autores del IAC
1
Número de citas
16
Número de citas referidas
15
Descripción
Context. To understand the role of the environment in galaxy formation, evolution, and present-day properties, it is essential to study the multifrequency behavior of different galaxy populations under various environmental conditions. Aims: We study the stellar mass functions of different galaxy populations in groups as a function of their large-scale environments using multifrequency observations. Methods: We cross-matched the SDSS DR10 group catalog with GAMA Data Release 2 and Wide-field Survey Explorer (WISE) data to construct a catalog of 1651 groups and 11 436 galaxies containing photometric information in 15 different wavebands ranging from ultraviolet (0.152 μm) to mid-infrared (22 μm). We performed the spectral energy distribution (SED) fitting of galaxies using the MAGPHYS code and estimate the rest-frame luminosities and stellar masses. We used the 1 /Vmax method to estimate the galaxy stellar mass and luminosity functions, and the luminosity density field of galaxies to define the large-scale environment of galaxies. Results: The stellar mass functions of both central and satellite galaxies in groups are different in low- and high-density, large-scale environments. Satellite galaxies in high-density environments have a steeper low-mass end slope compared to low-density environments, independent of the galaxy morphology. Central galaxies in low-density environments have a steeper low-mass end slope, but the difference disappears for fixed galaxy morphology. The characteristic stellar mass of satellite galaxies is higher in high-density environments and the difference exists only for galaxies with elliptical morphologies. Conclusions: Galaxy formation in groups is more efficient in high-density, large-scale environments. Groups in high-density environments have higher abundances of satellite galaxies, irrespective of the satellite galaxy morphology. The elliptical satellite galaxies are generally more massive in high-density environments. The stellar masses of spiral satellite galaxies show no dependence on the large-scale environment. The multifrequency catalog is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A29