Planet cartography with neural learned regularization

Asensio Ramos, A.; Pallé, E.
Referencia bibliográfica

Astronomy and Astrophysics

Fecha de publicación:
2
2021
Número de autores
2
Número de autores del IAC
2
Número de citas
6
Número de citas referidas
4
Descripción

Aims: Finding potential life harboring exo-Earths with future telescopes is one of the aims of exoplanetary science. Detecting signatures of life in exoplanets will likely first be accomplished by determining the bulk composition of the planetary atmosphere via reflected or transmitted spectroscopy. However, a complete understanding of the habitability conditions will surely require mapping the presence of liquid water, continents, and/or clouds. Spin-orbit tomography is a technique that allows us to obtain maps of the surface of exoplanets around other stars using the light scattered by the planetary surface.
Methods: We leverage the enormous potential of deep learning, and propose a mapping technique for exo-Earths in which the regularization is learned from mock surfaces. The solution of the inverse mapping problem is posed as a deep neural network that can be trained end-to-end with suitable training data. Since we still lack observational data of the surface albedo of exoplanets, in this work we propose methods based on the procedural generation of planets, inspired by what we have found on Earth. We also consider mapping the recovery of surfaces and the presence of persistent clouds in cloudy planets, a much more challenging problem.
Results: We show that reliable mapping can be carried out with our approach, producing very compact continents, even when using single-passband observations. More importantly, if exoplanets are partially cloudy like the Earth is, we show that it is possible to map the distribution of persistent clouds that always occur in the same position on the surface (associated with orography and sea surface temperatures) together with nonpersistent clouds that move across the surface. This will become the first test to perform on an exoplanet for the detection of an active climate system. For small rocky planets in the habitable zone of their stars, this weather system will be driven by water, and the detection can be considered a strong proxy for truly habitable conditions.
Proyectos relacionados
Imagen del Proyecto
Magnestismo Solar y Estelar

Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas

Tobías
Felipe García
Image withthe projects' name
Exoplanetas y Astrobiología

La búsqueda de vida en el Universo se ha visto impulsada por los recientes descubrimientos de planetas alrededor de otras estrellas (los llamados exoplanetas), convirtiéndose en uno de los campos más activos dentro de la Astrofísica moderna. En los últimos años los descubrimientos cada vez más numerosos de nuevos exoplanetas y los últimos avances

Enric
Pallé Bago
Project Image
Magnetismo, Polarización y Transferencia Radiativa en Astrofísica

Los campos magnéticos están presentes en todos los plasmas astrofísicos y controlan la mayor parte de la variabilidad que se observa en el Universo a escalas temporales intermedias. Se encuentran en estrellas, a lo largo de todo el diagrama de Hertzsprung-Russell, en galaxias, e incluso quizás en el medio intergaláctico. La polarización de la luz

Tanausú del
Pino Alemán